Lecture 1.a Class Introduction

ECE 125A – Introduction to Power Electronics I

© Hanh-Phuc Le @ UC San Diego

Hanh-Phuc Le Associate Professor, UC San Diego

- Ph.D.UC Berkeley, USA2013• M.S.KAIST, Korea2006
- B.S. HUST, Hanoi, Vietnam 2003

Prior experience:

- University of Colorado Boulder
- Lion Semi., San Francisco, CA
- Rambus, Sunnyvale, CA
- Intel, Beaverton, OR
- Oracle, Santa Clara, CA
- JDA Tech., Korea
- VAST, Vietnam

University of Colorado Boulder

The Quest for iPower Circuits

Class Logistics

- All communications on Canvas
 - Calendar
 - Media Gallery
 - Class videos
 - Files
 - Lecture slides
 - CAD Tools materials
 - Assignments
 - Assignments and Exams: Gradescope
 - Online submission, PDF
 - Discussions: Piazza
 - Grades: Gradescope and Canvas
 - · Modules: follow all main activities

Lab: PLECS simulation

- Install on your personal computer.
 - Can support on campus server.
- You will receive instructions to acquire license. Expect a questionnaire this week for this.
 - License will be given to you in one week.

Class Information

Time:	Lecture: Tuesday/Thursday 12:30 PM ~ 1:50 PM, DIB 122 (in-person only) Discussion Section: Monday 4:00 PM ~ 4:50 PM, WLH 2204 (in-person only)	
Instructor:	Prof. Hanh-Phuc Le (hanhphuc@ucsd.edu) Office Hours: Monday 1:00 PM ~ 2:00 PM over Zoom (or by appointment)	
TAs:	Nam Vu <h2vu@ucsd.edu> Xinyu Chen <x4chen@ucsd.edu> Snir Kinog <snkinog@ucsd.edu> Office Hours: at the lab WLH 2213B</snkinog@ucsd.edu></x4chen@ucsd.edu></h2vu@ucsd.edu>	
Admin:	Bethany Carson (bacarson@eng.ucsd.edu) Jacobs Hall, Room 2904	
Course Websites:	https://canvas.ucsd.edu/	
Grading:	15% Homework + Quiz (lowest score will be dropped) 15% Labs 35% Midterm exam 35% Final exam	
Textbook:	Power Electronics, By: D. W. Hart, McGraw-Hill, 2010, ISBN: 0073380679, 9780073380674	
Reference Textbooks	 Fundamentals of Power Electronics, Second Edition By: R. Erickson, D. Maksimovic, Kluwer Academic Publishers, 2001 Principles of Power Electronics By: J. G. Kassakian, M.F. Schlecht & G.C. Verghese, Addison Wesley, 1991 Power Electronics-Converters, Applications, and Design, 3rd Edition By: N. Mohan, T.M. Undeland and W.P. Robbins, 2003. 	
Prerequisites	ECE35, ECE65, ECE121, ECE188-Energy Conversion	
© Hanh-Phuc Le @ UC San Diego		

Class Contents

Торіс	Lecture/Meeting
Introduction to Power Electronics	1
Power semiconductor devices and characteristics	1
AC-to-DC rectifiers: Single-phase and three-phase, half-wave and full-wave, control	3
Non-Isolated DC-DC converters: Linear regulator, Buck, Boost, Buck-Boost	4
Midterm	1
Isolated DC-DC converters: Flyback, Forward, Push Pull, Full Bridge and Half bridge converters	4
Power loss calculation and thermal design	2
Related circuits: protection, filtering, snubber, etc.	1
Resonant converters	3
Final	

© Hanh-Phuc Le @ UC San Diego

Required Work and Grading

7

- Homework + Quiz (lowest score will be dropped): 15%
- Labs (PLECS simulations, experiment, and report): 20%
 - Buck converter
 - Boost converter
 - Buck-Boost converter
- Midterm exam: 30%
- Final exam: 35%

Class Policy

Deadlines: beginning of lecture

- Strict deadline
- but extension can be given with acceptable reasons
- Homework discussion is allowed and encouraged
 - But must submit individual unique solution.
- Lab:
 - Work and submission should be done individually.
 - Discussions and helping each others are encouraged.
 - No direct copy/sharing of actual circuit design is allowed
 - Possible collaboration is limited to sharing skill, knowledge, comparing numbers or similar.

All students are bound by the <u>UCSD Academic Integrity</u>

Software

- PLECS simulator by Plexim
 - <u>https://www.plexim.com/products/plecs</u>
 - Intuitive and powerful tool for power system simulation
 - Lots of available online tutorials and documentations
 - Other possible tools: PSIM, SIMPLIS, LTspice, MATLAB, Cadence.

• Will have the first lab on starting PLECS

- Use PLECS Standalone
 - Blockset: You can use it on your own.
- To verify license and functional operation
- Should be very simple