Lecture 1.a Class Introduction

ECE 283 – Power Management Integrated Circuits (PMIC)

© Hanh-Phuc Le @ UC San Diego

Hanh-Phuc Le Associate Professor, UC San Diego

2016 - 2019

2012 - 2015

2004 - 2007

2002 - 2004

2012

2009

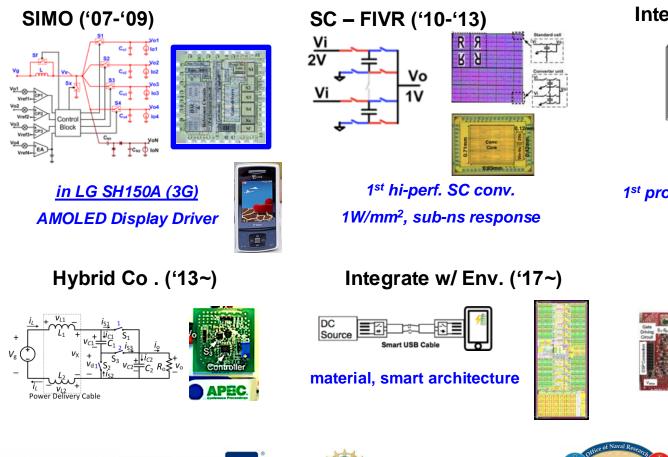
2008

- Ph.D. UC Berkeley, USA 2013
 M.S. KAIST, Korea 2006
- B.S. HUST, Hanoi, Vietnam 2003

• Prior experience:

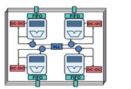
- University of Colorado Boulder
- Lion Semi., San Francisco, CA
- Rambus, Sunnyvale, CA
- Intel, Beaverton, OR
- Oracle, Santa Clara, CA
- JDA Tech., Korea
- VAST, Vietnam

ORACLE


University of Colorado Boulder

Qualcom

The Quest for iPower Circuits for All


© Hanh-Phuc Le @ UC San Diego

Semiconductor

STRUMENTS

Integ. Sys. and Func. ('14-'16)

3

1st processor core with SC ripple conv. iPower for brain implants

High-V, Large Conv. ('18~)

Class Logistics

• All communications on Canvas and Piazza

- Calendar
 - Zoom meeting link
- Media Gallery
 - Class videos
- Files
 - · Lecture slides
 - CAD Tools materials
 - Assignments
- Assignments and project reports
 - Online submission, PDF or PPT
- Discussions on Piazza
- Grades

• Log on remotely to campus servers to work on assignments and project

- You shall not copy/download any technology documents to your computer.
 - You will sign an NDA on this.
- Access will be given to you in the first 2 weeks of class.

Class Contents and Tentative Schedule

- Learn power management design techniques in the integrated context
- DC-DC converter topologies and operations (1.5 weeks)
 - Linear regulator, switched-inductor, switched-capacitor, and hybrid converters
 - Converter examples.
- Loss optimization and power switch sizing (1-1.5 weeks)
- Analog and digital building blocks for power management ICs (2-3 weeks)
 - Digital blocks: inverter, buffer, gate drivers, level shifter.
 - Analog blocks: Ramp and PWM generator, current mirror, amplifier, comparator, current sense, etc.
- Stability and compensation (1 week)
- Other topics:
 - Integrated device introduction: integrated inductors, integrated capacitors
 - Pad ring and ESD protections
 - Bandgap reference circuits
 - Design examples

Prerequisites

- Expected prior knowledge from classes below or equivalent
 - ECE 102 Introduction to Active Circuit Design (required)
 - ECE 125A Introduction to Power Electronics I (highly recommended)
 - ECE 164 Analog Integrated Circuit Design (highly recommended)
 - ECE 165 Digital Integrated Circuit Design (Optional)
- Familiarity with UNIX operating systems (CentOS/Redhat)
 - Search for getting started tutorials as necessary

Expectation of Class Organization

- Instructor: creates an environment.
 - Provide background and practical design knowledge
 - Track student's learning process
 - Advise directions as well as detailed circuit designs

- Students: take advantage of environment and setups
 - Learn and innovate
 - Read technical papers, recommended books, and discuss
 - Not afraid of grades
 - Give feedback
 - Improve the environment for next generations.

© Hanh-Phuc Le @ UC San Diego

Required Work and Grading

- Quiz (sometimes in-class): 10%
- ~4 Homework assignments: 25%
 - Homework are all building blocks of the project.
- Project: 65%
 - Preliminary and intermediate reports: 30%
 - Final review & report: 35%
- Term project has multiple phases, each has its own report (presentation slides) to submit on Canvas

Project Reports

Project group:

- 3 students per group.
- Teamwork
 - Specification definition: system level and block levels (team, possibly with a lead designer)
 - Sub-block assignment (parallel and individual)
 - Design integration (all team members)

Each group makes 3 oral presentation reports

- Project Proposal: Preliminary design (in the week of Oct 14th)
- Project Review 1: Intermediate design review (in the week of Nov 4th)
- Project Review 2: Final design review (in the week of Nov 25th)
- Final project report in PPT
 - Update the final design review PPT with final simulation results Dec 12th.

Class Policy

Deadlines: beginning of lecture

- 50% penalty after 3 days
- Submission closed after 1 week

Homework discussion is allowed and encouraged

• But must submit unique individual design.

Project sharing across teams

- Technical discussions, tool and simulation setup supports are encouraged
- No sharing of actual circuit design is allowed
 - Possible collaboration is limited to sharing skill scripts or similar

All students are bound by the <u>UCSD Academic Integrity</u>

Software

Cadence Virtuoso

- Increasingly popular in industry
- Lots of online tutorials and documentations

Start reading Cadence to prepare

• Canvas >> Files >> CAD Tool - Cadence

• Will have the first HW/lab on starting Cadence.

- Should be very simple with all the presets prepared.
 - Need to contact Prof. Le to resolve any software problems ASAP.